Identification and detection of gaseous effluents from hyperspectral imagery using invariant algorithms
نویسندگان
چکیده
The ability to detect and identify effluent gases is, and will continue to be, of great importance. This would not only aid in the regulation of pollutants but also in treaty enforcement and monitoring the production of weapons. Considering these applications, finding a way to remotely investigate a gaseous emission is highly desirable. This research utilizes hyperspectral imagery in the infrared region of the electromagnetic spectrum to evaluate an invariant method of detecting and identifying gases within a scene. The image is evaluated on a pixel-by-pixel basis and is studied at the subpixel level. A library of target gas spectra is generated using a simple slab radiance model. This results in a more robust description of gas spectra which are representative of real-world observations. This library is the subspace utilized by the detection and identification algorithms. The subspace will be evaluated for the set of basis vectors that best span the subspace. The Lee algorithm will be used to determine the set of basis vectors, which implements the Maximum Distance Method (MaxD). A Generalized Likelihood Ratio Test (GLRT) determines whether or not the pixel contains the target. The target can be either a single species or a combination of gases. Synthetically generated scenes will be used for this research. This work evaluates whether the Lee invariant algorithm will be effective in the gas detection and identification problem.
منابع مشابه
Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملDetection of gaseous plumes in IR hyperspectral images using hierarchical clustering.
The emergence of IR hyperspectral sensors in recent years enables their use in remote environmental monitoring of gaseous plumes. IR hyperspectral imaging combines the unique advantages of traditional remote sensing methods such as multispectral imagery and nonimaging Fourier transform infrared spectroscopy, while eliminating their drawbacks. The most significant improvement introduced by hyper...
متن کاملSociety of Photo - Optical Instrumentation
The ability to detect and identify gaseous effluents is a problem that has been pursued with limited success. It has been shown to be possible using the Invariant algorithm on synthetic hyperspectral scenes with a strong single gas release. That however, is a very specific case and leaves room for further investigation. This study looks at more realistic detection and release scenarios. Our imp...
متن کاملOverview of Physical Models and Statistical Approaches for Weak Gaseous Plume Detection using Passive Infrared Hyperspectral Imagery
The performance of weak gaseous plume-detection methods in hyperspectral long-wave infrared imagery depends on scene-specific conditions such at the ability to properly estimate atmospheric transmission, the accuracy of estimated chemical signatures, and background clutter. This paper reviews commonly-applied physical models in the context of weak plume identification and quantification, identi...
متن کامل